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Using regiospecifically oxygen-18-labeled antimalarial 
1,2,4-trioxane 1, we have shown that ferrous ion reduces 
the crucial peroxide linkage to form oxy radical and then 
carbon radical intermediates leading to the Crhydroxy-
lated product 2 and the ring-contracted product 3 in 
Scheme l.1 Using a stereochemical probe, we have 
shown further that, of these two pathways, only the first 
involving a C4 radical intermediate leading to the C4-
hydroxylated product 2 is important for high antima­
larial activity.23 Now we report significant and strong 
further evidence supporting the key role and the limita­
tions of such C4 radicals in the antimalarial activity of 
several new tricyclic trioxanes bearing diverse substit-
uents at C4. The structures and the antimalarial 
activities of these artemisinin analogs are shown in 
Table 1, and their syntheses are summarized in Schemes 
2 and 3. 

The antimalarial data in Table 1 support the following 
generalizations: (1) like the previously reported C4-
methyl derivative 5,2a the new C4-benzyl compound 6 
and the new C4-(trimethylsilyl)methyl analog 7 having 
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Scheme 1 

/^-stereochemistry? at C4 (thereby allowing the critical 
Ha atom transfer from the spatially proximate C4 to the 
oxy radical in a 1,5-fashion forming a C4 radical) are at 
least 12—200 times more active antimalarials than the 
corresponding a-substituted derivatives 5 -7 ; (2) both 
C4^-substituted derivatives 5 and 6 are potent antima­
larials, comparable in activity to artemisinin (Table 1) 
and having 11-13 times higher activity than the C4-
unsubstituted parent 4, thereby indicating that a ter­
tiary (i.e., more stable) C4 radical center seems to be 
better than a secondary C4 radical center (upper path­
way in Scheme 1) at promoting antimalarial potency; 
(3) likewise, the Csa-unsubstituted C4/3-benzyl analog 9 
has significantly higher antimalarial activity than the 
corresponding C4-unsubstituted parent analog 8;8 and 
(4) unexpectedly, the incorporation of a C4/g-substituent 
that substantially stabilizes an adjacent carbon radical 
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Table 1. Structure-Antimalarial Activity Relationships in 
Chloroquine-Sensitive P. falciparum (NF54)3 Parasites in Vitro" 

compd 
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7 
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9 

10 

artemisinin 
chloroquine 

R/3 

H 
Me 
PhCH2 
Me3SiCH2 

H 
PhCH2 
Ph 

IC50 
(ng/mL) 

MeO J 

OH 
34 

2.2 
3.0 

86 

RX4 H 

OAAgjJ 
MeO 

220 
98 

610 

3.0 
2.6 

Ra 

H 
Me 
PhCH2 
Me3SiCH2 

ICso 
(ng/mL) 

34 
360 
600 

>1000 

0 Antimalarial activity was determined by measuring the 
incorporation of [3H]hypoxanthine, by the method of Desjardins4 

as modified by Milhous.6 All drug concentrations were assayed 
in quadruplicate; the standard deviation for each set of quadru­
plicates was <18% of the mean. Dose-response curves were fit 
to the data using the Marquardt algorithm;6 R2 values for these 
curves were >0.992. 
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more effectively than a methyl or benzyl group,9 as in 
the C4/3-(trimethylsilyl)methyl analog 7 and the C^-
phenyl analog 10, does not produce a potent antima­
larial analog.10 All of the C^-oriented substituents in 
these analogs are spatially remote from the a-oriented 
peroxide linkage and therefore, according to molecular 
models, cannot interfere with approach of iron to the 
peroxide linkage. 

The surprisingly low antimalarial activity of such C49 
analogs 7 and 10 prompted study of the product 
distribution upon exposure of analog 10 to ferrous 
ions.11-13 In contrast to the antimalarially active (IC50 
= 4.0 ng/mL) benzyl ether of the C^-methyl analog 5 
that reacted with ferrous bromide in THF to give a 1:4 
ratio of a C4-hydroxylated product like 2 and a ring-
contracted product like 3, the C^-phenyl analog 10 
reacted under similar conditions to form ring-contracted 
acetal 11 as the only major product (eq 1); no more than 
a trace of any Ci-hydroxylated product like 2 was 
detectable. This result suggests that a C^-substituent 
that would make an adjacent carbon radical more stable 
than a tertiary radical in the upper pathway in Scheme 
1 seems to shunt the ferrous ion reduction of that analog 
toward the lower pathway in Scheme 1, thereby actually 
avoiding formation of the C4 radical intermediate that 
would lead to a C4-hydroxylated product like 2, char­
acteristic of a potent antimalarial trioxane. 

FeBr2 

THF 
25°C 

(D 

In conclusion, these results further support the 
importance of a carbon-centered radical leading to a C4-
hydroxylated product like 2 for high antimalarial activ­
ity of a 1,2,4-trioxane while also showing a limitation 
to this molecular mechanism; increasing the stability 
of such a radical beyond that of a simple tertiary radical 
by attaching a radical-stabilizing substituent9 does not 
lead, as originally expected, to even higher antimalarial 
potency but rather to a partially or completely inactive 
analog.20 These structure-activity relationship gener­
alizations10 and an understanding of the mechanism11,12 

at the molecular level may help the design of better 
chemotherapeutic antimalarial trioxanes. 
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